Abstract
Xylitol, a five-carbon sugar alcohol, is widely used as a functional sweetener in the food and confectionary industry because of a number of advantageous properties. Although xylitol is industrially produced by chemical reduction of d-xylose derived from hemicellulose hydrolysates, this production method is uneconomical because of the requirement for pure d-xylose, high temperature, and pressure. Therefore, xylitol production by microorganisms has attracted focus as an economical and environment-friendly method. A variety of compounds have been used as substrates (d-xylose, d-glucose, d-arabitol, and l-arabinose) or co-substrates (d-glucose, ethanol, and glycerol) during microbial production of xylitol. In order to improve the biological production of xylitol, both natural xylitol-producing and nonproducing strains of microorganisms have been subjected to genetic modification strategies. This chapter describes recent advances made in metabolic engineering efforts aimed at improving production of xylitol by fungi, yeasts, and bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.