Abstract
In this paper, we have demonstrated the feasibility of using microorganism-ionizing respirators with reduced breathing resistance to remove airborne bacteria. Using a miniaturized corona ionizer and two pairs of separator electrodes, airborne bacteria were ionized and removed from the airflow. Two microorganism-ionizing respirator designs were experimentally evaluated with flow rates ranging from ∼10 to 20 L/min and yielded airborne bacterial removal efficiencies of ∼75%–100%. Further, they were in close agreement with the analytical airborne particle removal efficiencies, at a similar range of flow rates. These flow rates also correspond to the breathing rates of standing and walking adults. More importantly, the breathing resistance could be reduced by more than 50% for flow rates of ∼200 L/min. Using manganese (IV) oxide coated mesh, the ozone concentration in the air outflow was reduced to less than 0.1 ppm, at a flow rate of ∼20 L/min, thus enabling safe use. The power consumption was less than 1 W.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.