Abstract

Peanut (Arachis hypogaea L.) is susceptible to iron (Fe) chlorosis, however, plant analysis diagnostic criteria are lacking for determining the intensity of chlorosis in this crop. As total Fe content is a misleading index of Fe nutritional status of plants, determination of physiologically active Fe fraction (Fe2+) is suggested for the purpose. In a nutrient indexing survey of the chlorosis‐affected peanut crop grown in the rainfed Potohar plateau of Pakistan, o‐phenanthroline extractable Fe2+ concentration in plants decreased with increasing severity of chlorosis and thus proved an effective technique for determining the intensity of Fe chlorosis. Green plants contained 40.1 to 67.3 mg Fe2+/kg, mildly chlorotic 32.1 to 40.0 mg Fe2+/kg, moderately chlorotic 28.0 to 32.0 mg Fe2+/kg, and severely chlorotic <28.0 mg Fe2+/kg. The minimum Fe2+ requirement in green plants was estimated to be 40 mg/kg on dry weight basis. In rainfed field experiments on a calcareous Typic Hapludalfs soil, foliar sprays of 1% solution of sequestrene (NaFeEDDHA) proved superior to the foliar sprays of 0.5% FeSO4.7H2O in correcting Fe chlorosis in two cultivars of peanut. Maximum increase in pod yield with sequestrene was 42% in cv. BARD‐92 and 27% in cv. BARD‐699 over the respective control yields. Ferrous concentration in plants increased with both the Fe sources, however, a substantial increase was recorded only with sequestrene. As peanut is a low‐input high‐risk rainfed crop, correction of Fe chlorosis by using sequestrene may not be economically feasible. Thus, development and/or screening of peanut varieties tolerant to Fe chlorosis is suggested by employing Fe2+ analysis technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call