Abstract
Hierarchical Beta zeolites with interconnected intracrystalline mesopores and high structural stability are highly attractive for catalytic applications involving bulky reactants. Here, by introducing a suitable amount of polydiallyldimethylammonium chloride into the initial synthesis system, micron-sized Beta zeolite crystals with abundant hierarchical porosity (Beta-H) were hydrothermally synthesized. The sample named Beta-H_1 exhibited very high catalytic activity and durability for the Friedel–Crafts acylation of anisole with acetic anhydride. A 92% conversion rate of acetic anhydride could be achieved after 1 h of reaction in a fixed bed reactor, and 71% conversion still remained after 10 h, much better than the rate for conventional Beta zeolite (which decreased rapidly from 85% to 37% within 10 h). The enhanced catalytic performance of Beta-H zeolites could be mainly attributed to the relatively lower strong acid density and the faster transport rate of the hierarchical zeolites. In addition, Beta-H showed high structural stability and could be easily regenerated via high-temperature calcination without obvious loss in catalytic activity, demonstrating its great potential for catalytic applications in the industrially important Friedel–Crafts acylation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.