Abstract

The aim of the work was to produce fibre-enriched fresh pasta based on micronised wheat bran and durum wheat semolina with appropriate techno-functional properties. Wheat semolina was replaced with fine particle size (50% below 75 µm) wheat bran - up to 11.54% (w/w). A Box-Behnken design with randomised response surface methodology was used to determine a suitable combination of carboxymethylcellulose, xanthan gum and locust bean gum to improve pasta attributes: minimum cooking loss, maximum values for water gain and swelling index, as well as better colour and texture characteristics before and after cooking. The proximate chemical composition of wheat semolina and bran was determined and the microstructure of uncooked pasta was observed as well. From the response surface methodology analysis, it is recommended to use: (i) xanthan gum over 0.6% w/w as it led to bran-enriched pasta with a better developed structure and superior cooking behaviour, (ii) a combination of xanthan gum (0.8% w/w) and carboxymethylcellulose (over 0.6% w/w) to enhance uncooked pasta yellowness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.