Abstract

The delivery of therapeutics to the posterior segment of the eye is achieved by invasive procedures, including intravitreal injections and implants. The topically applied formulations would not permeate through different tissue barriers of the eye to reach the posterior segment. Here, we demonstrate the effectiveness of microneedle scleral patch in delivering the model molecule, triamcinolone acetonide, to the posterior segment of the eye. Microneedle scleral patch (MSP) and microneedle corneal patch (MCP) were fabricated through the micromolding technique using rapidly dissolvable polyvinylpyrrolidone. The patches containing 25 microneedles were characterized for physical and mechanical properties, drug loading and release behavior in vitro and ex vivo porcine eye globe model. The distribution of TA administered using MSP and MCP in different ocular tissues was evaluated in the rabbit eye model. The results showed that microneedles with 545 ± 8 µm length and 279 ± 26 µm width at the base in MSP penetrate the scleral membrane with the application of 0.35 ± 0.06 N force. The needles dissolved within 60 s after insertion in the corneal and scleral tissue. The 5 min application of MSP showed a significantly (p < 0.05) greater TA disposition in the vitreous humor and choroid-retinal complex in excised porcine eye globe compared with MCP and TA nanosuspension eye drops. In rabbit model studies, the TA concentration was greatest in the choroid-retinal complex and sclera after administration through intravitreal injection and MSP, respectively. The TA disposition in the sclera was significantly (p < 0.05) greater after MSP application compared with intravitreal injection and MCP application for up to 24 h. MSP application provided a greater safety score compared with intravitreal injection. In conclusion, MSP can be developed as a minimally invasive drug delivery system to target the posterior segment of the eye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.