Abstract

High rates of restenosis and neointimal formation have driven increasing interest in the application of drug eluting balloons (DEB) as counteractive measures for intraluminal drug delivery. The use of DEBs eliminates the need for stents so that serious side effects including in-stent restenosis and stent thrombosis can be avoided and long-term medication of anti-platelet agent is not needed. Despite their benefits, DEBs have poor drug delivery efficiency due to short balloon inflation times (30–60 s) that limit the passive drug diffusion from the balloon surface to the luminal lesion. To increase drug delivery efficiency, a microneedle DEB (MNDEB) was developed by a conformal transfer molding process using a thin polydimethylsiloxane mold bearing a negative array of MNs of 200 μm in height. A MN array composed of UV curable resin was formed onto the surface of DEB, and drugs were coated onto the structure. The mechanical properties of the MN array were investigated and MN penetration into luminal vasculature was confirmed in vivo. An increase in drug delivery efficiency compared to a standard DEB was demonstrated in an in vivo test in a rabbit aorta. Finally, the superior therapeutic efficacy of MNDEBs was evaluated using an atherosclerosis rabbit model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call