Abstract

This paper investigates the microneedle (MN) mediated in vitro transdermal iontophoretic delivery of prochlorperazine edisylate (PE) across dermatomed human skin. The Dermaroller™ induced microchannels were visualized using methylene blue staining and scanning electron microscopy. In vitro skin permeation studies were performed using vertical static Franz diffusion cells. Iontophoretic protocols involved application of direct current at a density of 0.4 mA/cm2 using Ag as an anode and Ag/AgCl as a cathode. The effect of PE concentration (20, 50 and 100 mg/mL), number of passes of microneedles (0, 5, 10 and 20) on both iontophoretic and passive delivery of PE was studied. The Dermarollertm was found to successfully breach the skin barrier and a linear relationship (r2 = 0.99) was observed between the number of passes of the Dermaroller™ and the number of microchannels created. Passive transdermal flux of PE (0.060 ± 0.003 µg/cm2/h) at 50 mg/mL donor PE concentration) was low and increased (4.15 ± 0.57 µg/cm2/h) with the application of direct current. Application of iontophoresis in conjunction with microneedle pre-treatment resulted in enhanced flux (4.90 ± 0.39 µg/cm2/h at 50 mg/mL donor PE concentration) of PE. The projected transdermal PE flux indicates that a 9 cm2 patch could deliver PE in a sufficient amount to maintain therapeutic levels of the drug. In conclusion, microneedles when used in conjunction with iontophoresis significantly enhanced the transdermal delivery of PE and it may be feasible to develop an iontophoretic transdermal patch that could be integrated with MN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.