Abstract

This work aims at developing an immunotherapeutic strategy to deliver a cancer DNA vaccine targeting dendritic cells (DCs), to trigger their maturation and antitumor function, and reduce immune escape using a polymeric nanocomplex of paclitaxel (PTX)-encapsulated sulfobutylether-β-cyclodextrin (SBE)/mannosylated N,N,N-trimethylchitosan (mTMC)/DNA. To enhance DC-targeting and revoke immunosuppression is the major challenge for eliciting effective antitumor immunity. This codelivery system is characterized by using low-dose PTX as an adjuvant that is included inside SBE, and the PTX/SBE further serves as an anionic crosslinker to self-assemble with the cationic mTMC/DNA polyplexes. This system is used in combination with a microneedle for transcutaneous vaccination. Once penetrating into the epidermis, the mannosylated nanocomplexes would preferentially deliver the pTRP-2 DNA vaccine inside the DCs. Phenotypic maturation is demonstrated by the increased expression of costimulatory molecules of CD80 and CD86, and the elevated secretion of IL-12p70. The mixed leucocyte reactions reveal that the PTX/SBE-mTMC/DNA nanocomplexes enhance the proliferation of CD4+ and CD8+ T cells, and inhibit the generation of immune-suppressive FoxP3+ T cells. The system shows high antitumor efficacy in vivo. The PTX/SBE-mTMC/DNA nanocomplexes for DC-targeted codelivery of DNA vaccine and adjuvant PTX yield synergistic effects on the DC maturation and its presenting functions, thus increasing immune stimulation and reducing immune escape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call