Abstract

In order to exploit the transdermal route for systemic delivery of a wide range of drug molecules, including peptide/protein molecules and genetic material, a means of disrupting the excellent barrier properties of the uppermost layer of the skin, the stratum corneum, must be sought. The use of microneedle (MN) arrays has been proposed as a method to temporarily disrupt the barrier function of the skin and thus enable enhanced transdermal drug delivery. MN arrays consist of a plurality of micron-sized needles, generally ranging from 25 to 2000 µm in height, of a variety of different shapes and composition (e.g., silicon, metal, sugars and biodegradable polymers). The application of such MN arrays to the skin results in the creation of aqueous channels that are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of macromolecules. This article will focus on recent and future developments for MN technology, focusing on the materials used for MN fabrication, the forces required for MN insertion and potential safety aspects that may be involved with the use of MN devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.