Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a variety of the human gamma-herpesvirus that often leads to the occurrence of malignant tumors. In addition, the occurrence of Kaposi’s sarcoma is a major cause of death among AIDS patients. Ganciclovir (GCV) is the most widely used drug against KSHV infection in the clinic. GCV can restrict the in vivo synthesis of DNA polymerase in KSHV, thereby inhibiting the replication of the herpesvirus. However, GCV still suffers from poor specificity and transmembrane capabilities, leading to many toxic side effects. Therefore, developing a drug delivery system that increases GCV concentrations in target cells remains a significant clinical challenge. In this study, zeolite imidazole salt framework-8 (ZIF-8), a biocompatible porous material constructed by coordinating zinc ions and 2-methylimidazole, was used to load GCV. A nano-delivery system with a microneedle structure was also constructed using a polydimethylsiloxane (PDMS) microneedle mold to fabricate MN/GCV@ZIF-8 arrays. These arrays not only offered good skin-piercing capabilities but also significantly inhibited the cleavage and replication of the virus in vivo, exerting an anti-KSHV function. For these reasons, the arrays were able penetrate the skin’s stratum corneum at the tumor site to deliver GCV and play an anti-KSHV role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.