Abstract

The unexplored effect of chemical treatment of laser micro/nanostructured titanium surfaces deserves attention due to broadening our knowledge of surface enhancement of biomimetic synthesis of hydroxyapatite and osseointegration of titanium implants. In this study, NaOH–CaCl2-heat-water treatment of titanium is revisited and used to modify porous laser micro/nanostructured oxidic and flat titanium surfaces which are characterized by XRD, electron microscopy, zeta potential and FTIR and Raman spectroscopy. These surfaces are also assessed for their ability to induce biomimetic Ca phosphate deposition from a simulated body fluid (SBF) and to grow human Mesenchymal stem cells (hMSCs). The treatment of titanium surfaces is shown to involve unreported formation of crystalline CaCO3 and the related interpretation of physicochemical changes of the treated titanium surface in soaked SBF raises doubts about the specific role of an intermediary CaTiO3 in the biomimetic formation of apatite on titanium substrates. We show that the biomimetic formation of Ca phosphate in Tas SBF solution occurs both on the surface and in the bulk solution, it is enhanced on the structured surfaces and is affected by a Ca--O(Ti) layer originating on the pristine and chemical treated flat and micro/nanostructured topographies with different delays. These findings are confronted with the pilot results of in vitro analyses showing that the cell growth, shape and osteogenic differentiation of hMSCs are impeded on the surfaces modified by the NaOH–CaCl2-heat-water treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.