Abstract

The two-dimensional thin metal-organic frameworks (MOF) sheet has emerged as a promising hybrid material for applications in catalysis and optoelectronic devices. However, the small size and large thickness of an MOF sheet still pose barriers toward its potential applications. Herein, a micron-sized ultrathin MOF sheet is synthesized with the assistance of benzoic acid. Benzoic acid promoted the coordination of the porphyrin center with copper ions, reduced H-stacking and J-aggregation between the layers, and induced anisotropic growth of the MOF sheet. The results reveal the growth mechanism and provide a viable method for the synthesis of ultrathin MOF sheet. The as-prepared micron-sized ultrathin MOF sheet has good dispersion and high stability, which can ensure the long-term application properties of this material. The ultrathin thickness in combination with its micron size can make MOF as useful as graphene in practical applications. The synthesis of a micron-sized ultrathin MOF sheet similar to the thickness of graphene can pave the way for effective applications of two-dimensional MOF materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.