Abstract

Rapid thermal annealing (RTA) at 800–900 °C in air atmosphere is commonly used to crystallize bismuth-substituted yttrium iron garnet (Bi:YIG) deposited by vacuum evaporation techniques or metal–organic decomposition. However, the conventional RTA leads to undesirable effects in applications where Bi:YIG is the constituent material of a nano- or microstructure. Here we report on an approach to Bi:YIG local crystallization by a focused continuous wave laser beam (LRTA). The structural and optical properties of micron-sized Bi:YIG stripes crystallized in air, oxygen, nitrogen and argon atmospheres are discussed. The demonstrated LRTA can find practical applications for Bi:YIG monolithic integration on non-garnet substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.