Abstract
Micromotor fabrication and related issues are discussed. The micromotors under study are of the variable-capacitance side-drive type with salient-pole and wobble (harmonic) designs. Polysilicon surface micromachining forms the basis of the micromotor fabrication process. In this process, LPCVD heavily phosphorus-doped polysilicon is used for the structural parts, LPCVD silicon nitride is used for electrical isolation, and CVD low-temperature oxide is used to as the sacrificial material. The fabrication process affects the performance characteristics of the micromotor through the reproduction accuracy of the design geometry and through the modification of the characteristics of contacting surfaces. Pattern definition and delineation are among the most critical steps of the micromotor fabrication process because of the increasing surface topography during fabrication and the large film thicknesses utilized. The release and testing process can affect the frictional characteristics of the micromotor significantly, determining success or failure of operation by dielectric excitation.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.