Abstract
Excess micromotion is detrimental to accurate qubit control of trapped ions, thus measuring and minimizing it is crucial. In this paper, we present a simple approach for measuring and suppressing excess micromotion of trapped ions by leveraging the existing laser-driven qubit transition scheme combined with direct scanning of dc voltages. The compensation voltage is deduced by analyzing the Bessel expansion of a scanned qubit transition rate. The method provides a fair level of sensitivity for practical quantum computing applications, while demanding minimal deviation of trap condition. By accomplishing compensation of excess micromotion in the qubit momentum-excitation direction, the scheme offers an additional avenue for excess micromotion compensation, complementing existing compensation schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.