Abstract
The aim was to investigate the relation between micromorphology of porosity and electrical resistance of dental luting cements. Five dental luting cements were evaluated: zinc phosphate, glass ionomer, and three types of resin luting cements. Porosity of the specimen was analyzed by micro-CT and electrical resistance of cement was measured at voltage of 125 V up to 30 days and solubility of each specimen was calculated. It showed that the resin luting cements provided the highest electrical resistance regardless of amount of porosity. Zinc phosphate and glass ionomer had high porosity and the lowest resistance (14 and 3 kΩ, respectively). It was found that the electrical resistance of luting cement was not directly affected by the amount of porosity, but it seems to be related to pore connection. There is no correlation between electrical resistance and percentage of porosity but the morphology of porosity may have an influence on the electrical property of luting cement. Models of pore connection were proposed to explain the electrical resistance of luting cement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.