Abstract

Abstract The physical characteristics of the soil surface are of extreme importance in relation to energy and matter transfer processes between the atmosphere and the soil. Soil internal structure changes can be due to natural or artificial causes and one important natural process is the alternation of wetting and drying (W–D) processes, which induce swelling and shrinking of soil particles, causing modifications in pore size and shape. To study the consequence of these W–D events on possible modifications in pore size distribution, pore number, and pore shape of soil samples collected in metal rings pore image analysis was used. Samples were taken from profiles of three soils of different characteristics, named as Geric Ferralsol (GF), Eutric Nitosol (EN), and Rhodic Ferralsol (RF). Confined volumetric samples (50 cm3) were submitted to none (T0), three (T1), and nine (T2) subsequent W–D cycles. Image cross sections of resin impregnated soil permitted the micrometric and macrometric characterization of changes in soil structure induced by sequences of W–D cycles. Duncan's statistical test indicated that there were significant differences (α = 0.05) among treatments for all soil samples. General conclusions indicate that total pore area increased for all soils after repeated W–D processes, specifically 19.0 to 28.9% for GF, 5.9 to 11.7% for EN, and 13.0 to 17.2% for RF. Main changes of pore diameter occurred in pores larger than 500 μm, and minor changes were observed in the total number of these pores. It is demonstrated that soil samples undergo important changes in their structures after repeated W–D cycles. The information presented here is very important for the evaluation of soil water retention curves and other soil hydric properties, because soil samples used in these procedures are collected in rings and frequently submitted to several W–D cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.