Abstract

Aggregation in soils is the result of the interaction of the soil organic components and soil minerals. The reactivity of the mineral phase is acknowledged to interfere with aggregates formation and stabilization, but its influence on aggregation in semi-arid Mediterranean soils remains mostly unknown. In this study, we used micromorphological analysis of aggregates formed in a 28-d incubation in two agricultural soils differing only in the composition of the mineral phase in the upper Ap horizon (a carbonate-depleted Palexeralf with 21.5% clay, and a contiguous carbonate-rich Typic Calcixerept with 20.9% clay before decarbonation which was reduced to 10.4% upon decarbonation). The two soils belong to the same agricultural field and have had similar management for decades. Soil samples were completely disaggregated into their fractions < 250 μm, and incubated with fresh organic matter to stimulate re-aggregation. Macroaggregates (> 2 mm) formed during the incubation were separated at days 3, 7, 14, 21 and 28 and used to prepare thin sections. Macroaggregates were more abundant at day 3, and then decreased in number in the two soils, which indicates a dependency between organic matter decomposition and stable macroaggregates formation. They contained a greater proportion of smaller aggregates in the decarbonated soil. Micromorphological analysis revealed significant differences in the fabric and physical characteristics of these macroaggregates, in which bonds among primary particles were observed to be led by clays in the Palexeralf while the coarse fraction appeared embedded in a micromass with crystallitic b-fabric corresponding to carbonates in the Calcixerept. This resulted in a more compact fabric and less porosity in macroaggregates in the Calcixerept. Image analysis of thin sections was used to quantify and characterize the pore system of macroaggregates. Porosity (pores > 20 μm) was more than double (36.9% for 15.6%) within macroaggregates in the decarbonated soil, with more elongated pores. Although in both soils most pores were 20 to 150-μm in equivalent diameter, some porosity > 150 μm was observed only in macroaggregates from the decarbonated soil. These observations allow hypothesizing that the mechanisms responsible for aggregates stabilization and/or formation are different in the two soils, and that they result in different physical characteristics of soil aggregates. The implications of such differences on air and water flow rates within aggregates, and thus on the soil microbial activity and organic matter decomposition, as well as on soil erodibility, need to be studied and accounted for when evaluating the effect of soil management and other practices on soil quality in semi-arid Mediterranean agrosystems.

Highlights

  • Aggregation in soils is the result of the interaction of the soil organic components and soil minerals, which leads to soil aggregates formation and stabilization

  • The proportion of microaggregates within large aggregates (Figure 1) was constant in time since the starting of the incubation, and smaller in CALC than in DECALC. These results indicate that the dynamics of macroaggregation in the short-term was similar and related to organic matter (OM) decomposition in the two soils, as described in the hierarchical model of aggregation (Tisdall and Oades 1982; Six et al 2004)

  • The greater proportion of stable microaggregates within macroaggregates in DECALC than in CALC suggests that either the units from which these aggregates are built are different, or either the nature of the macroaggregates formed were different among soils

Read more

Summary

Introduction

Aggregation in soils is the result of the interaction of the soil organic components and soil minerals, which leads to soil aggregates formation and stabilization. These aggregates reciprocally contribute to organic matter protection and long-term organic C stabilization in soils (Angers and Chenu 1997; Six et al 1999). Six et al 2002) have observed that the pathways of aggregate formation and stabilization can be different in temperate soils than in oxide-rich tropical soils. They associated this to different mineralogy in these soils

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.