Abstract

This paper presents the development of nickel phosphorous (Ni-P) micromolding for the manufacturing of a 3D electrostatic energy harvesting microsystem. Ni-P alloy exhibits weak ferromagnetic properties beyond 10-12 wt% P content. Deposits were prepared at different current densities (-10 to -150 mA/cm²) and concentration of phosphorous acid in the electrolyte (0 -20g/l). The rate decreases when phosphorous content increases in the deposit. The final process leaded to choose a H3PO3 concentration of 5 g/l which give a 0.1 µm/min deposition rate for P content higher than 13 wt%. Mechanical, electrical and magnetic properties of the Ni-P films were investigated on 1mm² and 1cm² deposits and confirmed the suitability of that material for the target MEMS. Comb patterns of Ni-P micromolding have been realized on 2 inch wafer, leading to a 10 µm thick deposit containing 13.5 wt% in P, which is, at our knowledge, the first Ni-P micromolding involving electrodeposition growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.