Abstract

Thin dry electrodes are promising components in wearable healthcare devices. Assessing the condition of the human body by monitoring biopotentials facilitates the early diagnosis of diseases as well as their prevention, treatment, and therapy. Existing clinical-use electrodes have limited wearable-device usage because they use gels, require many preparation steps, and can be uncomfortable to wear. Dry electrodes can improve these issues and have demonstrated performance on par with gel-based electrodes, providing advantages in mobile and wearable applications. However, the materials and fabrication methods used are not yet at the level of disposable gel electrodes for low-cost mass manufacturing and wide adoption. Here, a low-cost manufacturing process for thin dry electrodes with a conductive micro-pyramidal array (MPA) is presented for large-scale on-skin wearable applications. The electrode is fabricated using micromolding techniques in conjunction with solution processes in order to guarantee ease of fabrication, high device yield, and the possibility of mass production compatible with current semiconductor production processes. Fabricated using a conductive paste and an epoxy resin that are both biocompatible, the developed MPA electrode operates in a conformal, non-invasive manner, with low skin irritation, which ensures improved comfort for brief or extended use. The operation of the developed electrode was examined by analyzing electrode-skin-electrode impedance, electroencephalography, electrocardiography, and electromyography signals and comparing them with those measured simultaneously using gel electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call