Abstract
A millimeter channel reactor which can achieve rapid mixing has been applied in many chemical processes. To intensify the micromixing performance, previous studies focused on the structure development and the optimization of operating conditions. However, using high gravity field for micromixing performance enhancement in the millimeter channel reactor has scarcely been assessed. In this work, a novel rotating millimeter channel reactor (RMCR) was proposed, which used centrifugal and Coriolis forces to further intensify the micromixing performance. The segregation index (Xs) and micromixing time (tm) of the RMCR were experimentally studied to evaluate the micromixing efficiency. Results showed that the micromixing efficiency of the RMCR was better up to 35% than that of the conventional millimeter channel reactor without rotation by the comparsions of Xs. According to the incorporation model based on the experimental data, the value of tm in the RMCR was calculated to be 10−6–10−4 s. Furthermore, the intensification mechanism analysis illustrated that the high gravity field effectively enhanced the contact with high velocity to intensify the premixing performance. This work provides a new strategy to improve the micromixing performance in the millimeter channel reactor via high gravity field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.