Abstract

This work investigates the micro-milling machinability of Ti-6Al-4V alloy produced by a Laser Engineered Net Shaping (LENS) additive manufacturing (AM) process with a specific focus on surface quality, cutting forces and burr formation. The effects of additive deposition parameters are also investigated since the material thermal history during processing can affect porosity and mechanical behavior of the samples, giving different milling performances. The material characterization of samples is done through micrographies, hardness tests and porosity evaluation. The roughness of the machined surfaces shows a statistical distinction between the AM and wrought titanium samples. Similar behavior is seen with the cutting forces, which increase with an increase of hardness of the AM samples. The results also show an increased trend towards burr formation in case of down milling of AM samples compared to wrought titanium samples. The future prospective is to take into account the machinability properties as functional material characteristics to optimize through the deposition process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.