Abstract

Experimentally observed electrical breakdown voltages (U(B)) in high-pressure gases and supercritical fluids deviate from classical theories for low-pressure gas discharges, and the underlying breakdown mechanisms for the high-density fluids making the U(B) differ from those in the classical discharges are not yet well understood. In this study, we developed an electrical breakdown model for the high-density fluids taking into account the effects of density fluctuations and ion-enhanced field emission (IEFE). The model is based on the concept that a critical anomaly of the U(B) (local minimum near the critical point) is caused by long mean free electron path leading to a large first Townsend coefficient in locally low-density spatial domains generated by the density fluctuations. Also, a modified Paschen's curve considering the effect of the IEFE on the second Townsend coefficient was used to reproduce the U(B) curve in the high-density fluids. Calculations based on the novel model showed good agreements with the experimentally measured U(B) even near the critical point and it also suggested that the critical anomaly of the U(B) depends on the gap distance. These results indicate that both the density fluctuations and the IEFE have to be considered to comprehend the plasmas in high-density and density-fluctuating fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call