Abstract

Using a model system based on electrostatics, we probe interactions between spherical particles (negative silica) and planar surfaces that present randomly placed discrete attractive regions, 10 nm in size, in a repulsive background (silica flats carrying cationic surface constructs). Experiments measure the adhesion rates of particles onto the patchy collecting surfaces from flowing dispersions, as a function of the surface loading of the attractive patches, for different particle sizes (0.5 and 1 mum diameter spheres) and different ionic strengths. Surfaces densely populated with patches, such that they present net electrostatic attractions to approaching particles, capture particles at the transport-limited (maximum) rate. Surfaces sparsely loaded with attractive patches (which present a repulsive mean field to approaching particles) are usually still adhesive, but the particle adhesion rate depends on particle size, ionic strength, and patch loading. Most significant is an adhesion threshold, a critical density of patches needed to capture particles. This threshold, which occurs at average patch spacings of 30 nm and larger and which can be tuned through ionic strength, comprises the ability of the patchy surfaces to selectively distinguish particles of different sizes or objects of different local curvature or roughness. The observation of such an adhesion threshold implicates spatial fluctuations in patch arrangement. In addition to experiments, this paper develops arguments for lengthscales that govern adhesion rate behavior, comparing particle geometry and fluctuation lengthscales, and then demonstrating qualitative consistency with the localized colloidal potentials involved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call