Abstract
High-temperature tensile deformation behavior of directionally solidified nickel base superalloy CM 247 DS is studied by conducting tensile tests in temperature range RT-955 °C employing a constant strain rate of 10−3 s−1 and carrying out extensive electron microscopic examinations to understand the concomitant substructural evolution. The alloy exhibits yield strength anomaly (YSA) behavior like many other superalloys, and the yield strength maxima occur at 750 °C. However, unlike in most of the superalloys, ductility continuously increases with temperature. The deformation behavior of the alloy changes significantly with temperature. Transmission electron microscopic examination confirmed that at lower temperature (≤ 750 °C), γ′ shearing is the dominant deformation mechanism; whereas at temperatures above 750 °C, thermally activated dislocation looping around γ′ precipitate is dominant. Substructures evolved during deformation at 750 °C consists mainly of superlattice stacking faults (SSFs) inside γ′ precipitates, whereas at 850 °C uniform dislocation tangles are observed in γ matrix. Superlattice stacking faults result from shearing of γ′ precipitate by a/3〈112〉 dislocations, which arise from the decomposition of a/2〈110〉 matrix dislocations. YSA in this alloy is attributed to dislocation interactions inside γ′; however, the enhanced ductility even at 750 °C is due to formation of SSFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.