Abstract

A micromechanical model for short fiber-reinforced composites (SFRCs) with functionally graded interphases and a systematic prediction scheme to determine the effective properties are presented. The matrix and the fibers are regarded to be linear elastic, isotropic, and homogeneous. Fibers are assumed to be ellipsoids coated perfectly by functionally graded interphases, which is supposed to be formed chemically or physically by the constituents near the interface. First, to analyze the grading interphase effect, layer-wise concept is followed to divide the functionally graded interphases into multi-homogeneous sub-layers. Next, to take the effect of functionally graded interphases into account, a combination of multi-inclusion method and Mori–Tanaka method is applied to predict effective elastic properties of this unidirectional SFRCs with respect to the content and aspect ratio of the inclusions. By employing coordinate transformation, spatially elastic moduli are obtained. Finally, Voigt homogenization scheme is used to obtain the overall, averaged, symmetrical elastic properties of the SFRCs. Numerical examples and analyses demonstrate the applicability of the proposed method and indicate the influences of graded interphase, orientation, and aspect ratio of inclusions as well as properties and contents of the constituents on the overall properties of SFRCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.