Abstract

Microcracks have been associated with age-related bone tissue fragility and fractures. The objective of this study was to develop a simple osteonal cortical bone model and apply linear elastic fracture mechanics theory to understand the micromechanics of the fracture process in osteonal cortical bone and its dependence on material properties. The linear fracture mechanics of our composite model of cortical bone, consisting of an osteon and interstitial bone tissue, was characterized in terms of a stress intensity factor (SIF) near the tip of a microcrack. The interaction between a microcrack and an osteon was studied for different types of osteons and various spacing between the crack and the osteon. The results of the analysis indicate that the fracture mechanics of osteonal cortical bone is dominated by the modulus ratio between the osteon and interstitial bone tissue: A soft osteon promotes microcrack propagation toward the osteon (and cement line) while a stiff one repels the microcrack from the osteon (and cement line). These findings suggest that newly formed, low-stiffness osteons may toughen cortical bone tissue by promoting crack propagation toward osteons. A relatively accurate empirical formula also was obtained to provide an easy estimation of the influence of osteons on the stress intensity factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.