Abstract

This work investigates the elasto-plastic response of platelets-like inclusions reinforced polymer composites showing an imperfect interface. The solution of the heterogeneous material problem is solved through a kinematic integral equation. To account for the interfacial behaviour, a linear spring model LSM is adopted, leading to an expression of the modified Eshelby’s tensor. As a consequence, the interfacial contributions with respect to the strain concentration tensor within each phase as well as in the average strain field are described by a modified version of the Mori-Tanaka scheme for the overall response. The non-linear response is established in the framework of the J2 flow rule. An expression of the algorithmic tangent operator for each phase can be obtained and used as uniform modulus for homogenisation purpose. Numerical results are conducted on graphene platelets GPL-reinforced polymer PA6 composite for several design parameters such as GPL volume fraction, aspect ratio and the interfacial compliance. These results clearly highlight the impact of the aspect ratio as well as the volume fraction by a softening in the overall response when imperfection is considered at the interface. Present developments are analytical-based solutions. They constitute a theoretical framework for further multi-scale applications in automotive. The crashworthiness simulation incorporating an influence of the interfacial behaviour on the strain energy absorption SEA is of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.