Abstract

Effective stiffness of shape memory polymer (SMP) nanocomposites filled with graphene nanoplatelets (GNPs) is analyzed at various temperatures using an efficient micromechanical scheme. Three microstructural features, including aggregation and non-flatness shape of graphene, and GNP/SMP interphase are incorporated. It is found that addition of GNPs can enhance the temperature-dependent stiffness of SMP nanocomposites. The nanocomposite stiffness is more improved by (I) increasing the volume fraction, (II) increasing the length (or width) and (III) decreasing the thickness of uniformly dispersed GNPs. Also, an effective way to remarkably augment the nanocomposite stiffness is suggested to be alignment of the GNPs into the SMP matrix. However, the aggregated state and non-flatness configuration of GNPs act as two lowering factors of SMP nanocomposite stiffness. From mechanical viewpoint on designing a SMP nanocomposite, the interfacial zone should be as stiff and thick as possible. It is observed at very low volume fraction that the non-flatness structure and interfacial zone should be included in the modeling to give better predictions as compared with experiments. At high volume fraction, the GNP aggregation in addition to those two factors should be reflected in the analysis to encompass a more realistic micromechanical scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.