Abstract

The problem of the determination of stochastic constitutive laws for input to continuum-type boundary value problems is analyzed from the standpoint of the micromechanics of polycrystals and matrix-inclusion composites. Passage to a sought-for random continuum is based on a scale dependent window playing the role of a Representative Volume Element (RVE). It turns out that an elastic microstructure with piecewise continuous realizations of random tensor fields of stiffness cannot be uniquely approximated by a random field of stiffness with continuous realizations. Rather, two random continuum fields may be introduced to bound the material response from above and from below. As the size of the RVE relative to the crystal size increases to infinity, both fields converge to a deterministic continuum with a progressively decreasing strength of fluctuations. Since the RVE corresponds to a single finite element cell not infinitely larger than the crystal size, two random fields are to be used to bound the solution of a given boundary value problem at a given scale of resolution. The method applies to a number of other elastic microstructures, and provides the basis for stochastic finite differences and elements. The latter point is illustrated by an example of a stochastic boundary value problem of a heterogeneous membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.