Abstract

Pyrolytic conversion causes severe changes in the microstructure of the wood cell wall. Pine wood pyrolysed up to 325 °C was investigated by transmission electron microscopy, atomic force microscopy and nanoindentation measurements to monitor changes in structure and mechanical properties. Latewood cell walls were tested in the axial, radial and tangential directions at different temperatures of pyrolysis. A strong anisotropy of elastic properties in the native cell wall was found. Loss of the hierarchical structure of the cell wall due to pyrolysis resulted in elastic isotropy at 300 °C. The development of the mechanical properties with increasing temperature can be explained by alterations in the structure and it was found that the elastic properties were clearly related to length and orientation of the microfibrils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.