Abstract

This paper presents a model for evaluating microcrack development and dilatant behavior of crystalline rocks. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing fracture mechanics based cohesive zone models. The model is capable of describing the evolution from initial debonding through complete separation and subsequent void growth of an interface. An example problem of a rock salt specimen subjected to a high deviatoric load and low confinement is presented that predicts preferential opening of fractures oriented parallel with the maximum compressive stress axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call