Abstract

We report micromechanically enabled 3D optical microcavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new design specifications. These devices also utilize true 3D design freedom, facilitating the realization of microscale optomechanical elements with challenging geometries. A released hemispherical Fabry–Pérot (FP) cavity was sculpted on a fiber tip using 2PP process and demonstrated an extinction ratio of around 253. In addition, a mechanically enabled FP cavity featuring a multi-positional hinged mirror was fabricated by 2PP on a fiber tip. The hinged mirror enables both a concave optical surface and high-reflective (HR) coating to be integrated into a cavity less than $30\ \mu \mathrm{m}$ long. The addition of micromechanical components and HR coating has improved the FP cavity’s resonant quality by better than 10x compared to the FP cavity without HR coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.