Abstract

Recent advances in micro-electro-mechanical systems (MEMS) have led to the development of uncooled IR detectors operate as micromechanical thermal detectors or micromechanical quantum detectors. We report on a new method for photon detection using electronic stresses in semiconductor microstructures. Photo-induced stress in semiconductor microstructures, is caused by changes in the charge carrier density in the conduction band and photon detection results from the measurement of the photon-induced bending of semiconductor microstructures. Small changes in position of microstructures are routinely measured in atomic force microscopy where atomic imaging of surfaces relies on the measurement of small changes in the bending of microcantilevers. Changes in the conduction band charge carrier density can result either from direct photo- generation of free charge carriers or from photoelectrons emitted from thin metal film surface in contact with a semiconductor microstructure which forms a Schottky barrier. In our studies we investigated three systems: (i) Si microstructures, (ii) InSb microstructures and (iii) Si microstructures coated with a thin excess electron-hole- pairs while for InSb photo-induced stress causes the crystal lattice to expand. We will present our results and discuss our findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.