Abstract

Dynamic fracture in two-phase Al2O3/TiB2 ceramic composite microstructures is analyzed explicitly using a cohesive finite element method (CFEM). This framework allows the effects of microstructural heterogeneity, phase morphology, phase distribution, and size scale to be quantified. The analyses consider arbitrary microstructural phase morphologies and entail explicit tracking of crack growth and arbitrary fracture patterns. The approach involves the use of CFEM models that integrate cohesive surfaces along all finite element boundaries as an intrinsic part of the material description. This approach obviates the need for any specific fracture criteria and assigns models the capability of predicting fracture paths and fracture patterns. Calculations are carried out using idealized phase morphologies as well as real phase morphologies in actual material microstructures. Issues analyzed include the influence of microstructural morphology on the fracture behavior, the influence of phase size on fracture resistance, the effect of interphase bonding strength on failure, and the effect of loading rate on fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.