Abstract
Ultrahigh molecular weight polyethylene (UHMWPE) is used as a key component of total joint replacements (TJR) and its mechanical performance is one of the factors influencing TJR lifetime. Micromechanical properties of three model UHMWPE samples with different molecular weights were evaluated from both non-instrumented and instrumented microindentation hardness testing. The properties were correlated with molecular and supermolecular structure of the samples. We have demonstrated that molecular weight influenced the final micromechanical properties mostly indirectly – it changed the overall crystallinity, which strongly correlated with microhardness, indentation modulus, and also with the elastic part of the indentation work. Only microcreep was influenced predominantly by amorphous phase, in which the higher molecular weight resulted in higher amount of entanglements and slightly higher creep resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.