Abstract

A micromechanics-based model, able to quantify the effect of various parameters on the complete stress–strain relationship, is described. The closed-form explicit expression for the complete stress–strain relationship of a rock material containing an echelon cracks arrangement subjected to compressive loading is obtained. The complete stress–strain relationship including the stages of linear elasticity, non-linear hardening and strain softening is established. The results show that the complete stress–strain relationship and the strength of rock with echelon cracks depend on the crack interface friction coefficient, the sliding crack spacing, the perpendicular distance between the two adjacent rows, the fracture toughness of rock material and orientation of the cracks. The present model is used to evaluate the complete stress–strain relationship and strength for crack-weakened rock at the underground cavern complex of the Ertan Hydroelectric Project. The predicted strength is in agreement with that obtained by the Hoek–Brown criterion. The numerical results obtained with the complete stress–strain relationship seem to be in good agreement with the measured values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.