Abstract

The risk of bone fracture increases with age because of a variety of factors that include, among others, decreasing bone quantity and quality due to increasing porosity and crack density with age. Experimental evidence has indicated that changes in bone microstructure and trace mineralization with age can result in different crack-tip strain field and fracture response, leading to different fracture mechanisms and R-curve behaviors. In this paper, a micromechanical modeling approach is developed to predict the R-curve response of bone tissue by delineating fracture mechanisms that lead to microdamage and ligament bridging by incorporating the influence of increasing porosity and crack density with age. The effects of age on fracture of human femur cortical bone due to porosity (bone quantity) and bone quality (crack density) with age are then examined via the micromechanical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call