Abstract

A theoretical model to predict the response of laminated cement-based composites is developed. The micromechanical model simulates the mechanical response of a multilayer cement-based composite laminate under uniaxial, biaxial, and flexural loading modes. Tsai-Wu Criterion is used for each lamina and the stacking sequence is utilized to obtain the overall stiffness matrix. The effect of distributed cracking on the stiffness degradation of the cross ply layers under tensile loading is measured using a scalar damage parameter that is empirically related to the apparent strain. The model is calibrated by predicting the load versus deformation response of unidirec- tional, cross ply, and angle ply laminates under tensile and flexural loading. Results are then compared to the experimental results cross ply and angle composites with various stacking sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.