Abstract

Damage initiation and progression in long fibre unidirectional continuous polymer composites has been studied at the micro-scale considering a three dimensional repeating unit cell (3D-RUC) with square packing consisting of a single fibre in a polymer matrix. Three damage modes under static loading have been looked at, viz., matrix damage, fibre failure and fibre-matrix debonding. A progressive damage model for the matrix, fibre breakage model using maximum stress failure criterion and interface debonding using a traction-separation criterion via cohesive zone modelling (CZM) approach has been implemented. Homogenization of the said 3D-RUC has been conducted for various load cases that describes the averaged response of the microstructure under combined progressive damage modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.