Abstract

A micromechanical model was developed to predict the elastic moduli of hydroxyapatite (HA) whisker reinforced polymer biocomposites based upon the elastic properties of each phase and the reinforcement volume fraction, morphology, and preferred orientation. The effects of the HA whisker volume fraction, morphology, and orientation distribution were investigated by comparing model predictions with experimentally measured elastic moduli for HA whisker reinforced high-density polyethylene composites. Predictions using experimental measurements of the HA whisker aspect ratio distribution and orientation distribution were also compared to common idealized assumptions. The best model predictions were obtained using the experimentally measured HA whisker aspect ratio distribution and orientation distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call