Abstract

The advent of biomedical applications of soft bioinspired materials has entailed an increasing demand for streamlined and expedient characterization methods meant for both research and quality control objectives. Here, a novel measurement system for the characterization of biological hydrogels with volumes as low as 75µL was developed. The system is based on an indentation platform equipped with micrometer drive actuators that allow the determination of both the fracture points and Young's moduli of relatively stiff polymers, including agarose, as well as the measurements of viscosity for exceptionally soft and viscous hydrogels, such as DNA hydrogels. The sensitivity of the method allows differentiation between DNA hydrogels produced by rolling circle amplification based on different template sequences and synthesis protocols. In addition, the polymerization kinetics of the hydrogels can be determined by time-resolved measurements, and the apparent viscosities of even more complex DNA-based nanocomposites can be measured. The platform presented here thus offers the possibility to characterize a broad variety of soft biomaterials in a targeted, fast, and cost-effective manner, holding promises for applications in fundamental materials science and ensuring reproducibility in the handling of complex materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.