Abstract

A novel analytical model is proposed for the in-plane shear response of unidirectional composites on account of fiber-matrix interface. The fiber-matrix interface influences the stiffness and induces nonlinear phenomena, playing a fundamental role in the damage onset and propagation. The interface consists of three zones: fiber-transition, core, and matrix-transition. The transition zones are assumed to have zero thicknesses, while the core zone is a layer with finite thickness. Fiber-transition zone is characterized by a nonlinear damage behavior. The analytical model is verified by comparing with finite element simulations and experimental data, indicating adequate description of the complex phenomena under study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call