Abstract

Polypropylene (PP) was reinforced with four natural fillers having different particle characteristics. Interfacial adhesion was changed by the introduction of maleated polypropylene (MAPP). The properties of the studied PP/wood composites depended strongly on interfacial adhesion and on the particle characteristics of the wood. Coupling with functionalized polymer is necessary for the preparation of composites with acceptable properties if the size of the particles is large and their aspect ratio is small. The effect of adhesion is smaller for particles with large aspect ratio. Several micromechanical deformation processes may occur in PP/wood composites including matrix yielding, debonding, fiber pull-out and fiber fracture both parallel and perpendicular to the fiber axis. The processes are competitive and may take place simultaneously and/or consecutively. The inherent properties of the reinforcement may limit the improvement of composite strength. Micromechanical deformation processes determine composite properties irrespectively of their mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.