Abstract
Ovarian follicles develop in a highly regulated mechanical microenvironment and disruptions to the microenvironment may cause infertility. However, the viscoelastic properties of the ovarian tissue are not well studied. Here, we characterize both the elastic and viscoelastic properties of ovarian tissue from both reproductively older and younger domestic cats using atomic force microscopy (AFM) indentation and viscoelastic models of stress relaxation. Importantly, our analyses reveal the apparent elastic modulus obtained from the conventional AFM indentation measurement is significantly higher than the intrinsic elastic modulus and insignificantly different from the equivalent elastic modulus that is the summation of the intrinsic elastic modulus and the viscoelastic contribution to modulus at time 0. Interestingly, the ovarian cortex of both reproductive age groups has a higher apparent/intrinsic modulus than that of the medulla. Furthermore, two different kinetics of stress relaxation are identified with rate constants of ∼1s and ∼20-40s, respectively. Moreover, the rate constant of the slow kinetics is significantly different between the cortex and medulla in the reproductively older ovaries. Finally, these mechanical heterogeneities appear to follow the heterogeneous distribution of hyaluronic acid (HA) in the ovary. These findings may be invaluable to the development of biomimetic follicle culture for treating infertility. STATEMENT OF SIGNIFICANCE: This study investigates not only elastic but also the viscoelastic heterogeneity in both reproductively younger and older ovarian tissues for the first time. Further, by combining AFM indentation measurement and viscoelastic modeling, we show the apparent elastic modulus conventionally reported in the literature for AFM indentation measurement is the summation of the intrinsic elastic modulus and a significant viscoelastic contribution to the modulus at time 0. This is an important consideration for others who use this method to quantify biomaterial properties. In addition, the possible connection between the mechanical and compositional heterogeneities is explored. These findings may be invaluable for designing biomaterials to recapitulate the mechanical environment of the ovary and possibly many other organs for biomimetic tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.