Abstract

The shearing behaviour of reproduced flat LBS grains artificially bonded with ordinary Portland cement (OPC) and plaster of Paris (PP) was examined using micromechanical experiments. Monotonic shearing tests showed a distinct variation in the load–displacement relationship at low, medium and high normal loads, and a nonlinear shear strength envelope was proposed. For OPC-bonded sand grains, a brittle–ductile transition at 20–30 N normal load was observed and three breakage mechanisms in shearing (chipping, shear cracks and crushing) were distinguished in accordance with the changes in the load–displacement curves. OPC-bonded sands showed a predominant dilation at lower normal loads, whereas PP-bonded sands were highly compressive. Based on previously published works using element-scale tests, a new mechanism for dilation under micromechanical testing was proposed in the study. Cyclic shearing tests were conducted on OPC-bonded sands, and the effects of increased displacement amplitude and normal load were highlighted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call