Abstract
This paper presents the micromechanical behavior of granular materials due to different initial inherent anisotropic conditions during cyclic loading using the discrete element method (DEM). Oval particles were used to model the samples. Three samples, with three different inherent anisotropic conditions based on the particle’s bedding direction, were prepared and subjected to biaxial cyclic loading. The differences in the inherent anisotropic conditions of the samples affect the stress–strain-dilative behavior of granular materials. The width of the stress–strain cyclic loops decreases as the preferred bedding angle changes from vertical to horizontal. Contact fabric evolution is found to be dependent on the inherent anisotropic fabric of the sample during loading and unloading. The fabric anisotropy is dominant for horizontal particle bedding at the end of loading and for vertical particle bedding at the end of unloading. A change in fabric anisotropy is observed only for the first few loading–unloading cycles for the given conditions depicted in the present study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.