Abstract
The mechanical behaviour of fibre-reinforced composites under transverse tension, compression and shear is studied using computational micromechanics. The representative volume element is constructed for fibre’s random distribution. The Drucker–Prager model and cohesive zone model are used to simulate the matrix damage and interfacial debonding, respectively. The stress distribution along the interface is studied using the model with only one fibre embedded in the matrix. It is found that the interface tensile failure at the equators of fibre firstly occurs under transverse tension; the interface shear failure firstly occurs under transverse compression; both the interface tensile failure and shear failure occur under transverse shear. The direction of fracture plane is perpendicular to the loading direction under transverse tension, 52.5° with the perpendicular direction under compression and 7.5° with the perpendicular or vertical direction under shear, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Composite Interfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.