Abstract

Cyclopentane hydrate interparticle adhesion force measurements were performed in pure cyclopentane liquid using a micromechanical force apparatus. Cyclopentane hydrate adhesion force measurements were compared to those of cyclic ethers, tetrahydrofuran and ethylene oxide, which were suspected to be cyclic ether-lean and thus contain a second ice phase. This additional ice phase led to an over-prediction of the hydrate interparticle forces by the capillary bridge theory. The adhesion forces obtained for cyclopentane hydrate at atmospheric pressure over a temperature range from 274-279 K were lower than those obtained for the cyclic ethers at similar subcoolings from the formation temperature of the hydrate. The measured cyclopentane interparticle adhesion forces increased linearly with increasing temperature, and are on the same order of magnitude as those predicted by the Camargo and Palermo rheology model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.